Selasa, 16 Maret 2010

Fisika Semester 2

Momentum, Impuls dan Tumbukan
Kejadian yang sedang berlangsung dinamakan dengan momentum, setiap benda pasti memiliki massa dan apabila benda bergerak pasti memiliki kecepatan, maka pada benda yang sedang bergerak berarti saat itu benda memiliki besaran yang disebut momentum yang persamaannya P=m.v, P=momentum(kgms-1), m=massa(kg), v=kecepatan(m/s).
Gaya yang terjadi sesaat pada suatu benda dinamakan impuls, sehingga persamaannya I=F.∆t, dengan keterangan I=impuls(Ns), F=gaya(N) dan ∆t=selang waktu(s). Benda bermassa m dengan kecepatan v0 , maka impuls sama dengan perubahan momentum yaitu selisih momentum akhir dengan momentum awal.
Karena momentum merupakan besaran vektor, maka arah sangat menentukan. Momentum awal sistem sama dengan momentum akhir sistem. Hukum ini dikenal dengan Hukum Kekekalan Momentum yang berbunyi “momentum awal sistem sebelum tumbukan sama dengan momentum akhir sistem sesudah tumbukan, asalkan tidak ada gaya-gaya luar yang mempengaruhi sistem itu”.
Dengan persamaan
ΣP=ΣP’
pa+pb=pa’+pb
mava+mbvb=mava’+mbvb
Pada tumbukan lenting sempurna berlaku : hukum kekekalan momentum, hukum kekekalan energi kenetis, koefisien restitusinya bernilai 1 (e=1), jumlah kecepatan sebelum tumbukan sama dengan kecepatan sesudah tumbukan.
Pada tumbukan lenting sebagian berlaku : hukum kekekalan momentum 0<1.
Pada tumbukan tak lenting sempurna (sama sekali tidak lenting) berlaku : hukum kekekalan momentum v1’=v2’=v (e=o).
Tumbukan pada peristiwa pemantulan : e= √h2/h1
Momentum Sudut dan Benda Tegar
1. Dinamika Gerak rotasi
1.1. Perbandingan Gerak Translasi dan Gerak Rotasi
No
Gerak Translasi (Gerak linier / lurus)
Gerak Rotasi (Gerak anguler / melingkar)
1
Posisi
x
Posisi Sudut
θ
2
Kecepatan
v = dx/dt
Kecepatan anguler
ω = dθ/dt
3
Percepatan
a = dv/dt
Percepatan anguler
α = dω/dt
4
Massa
m
Momen Inersia
I
5
Hk. Newton II
ΣF = m a
Hk. Newton II
Στ = I α
6
Usaha
W = F s
Usaha
W = τ θ
7
Energy Kinetik
Ek = ½ m v2
Energy Kinetik
Ek = ½ I ω2
8
Daya
P = F v
Daya
P = τ ω
9
Hub. Usaha dan Ek
W = ∆ Ek
Hub. Usaha dan Ek
W = ∆ Ek
10
Momentum
p = m v
Momentum
L = I ω
Gerak Translasi (Lurus)
GLB
1. ΣF = 0 a = 0
v = konstan
s = v t
GLBB
2. ΣF ≠ 0 a = konstan
ΣF = konstan vt = v0 + a t
s = v0 t + ½ a t2
v2 = v02 + 2 a s
s = ½ (v0 + vt) t
GLBTB
3. ΣF ≠ 0 a ≠ konstan
ΣF ≠ konstan v =
S =

Gerak Rotasi (Melingkar)

GLB
1. Στ = 0 α = 0
ω = konstan
θ = ω t
GMBB
2. Στ ≠ 0 α = konstan
Στ = konstan ωt = ω0 + α t
θ = ω0 t + ½ α t2
ω2 = ω02 + 2 α θ
θ = ½ (ω0 + ωt) t
BMBTB
3. Στ ≠ 0 α ≠ konstan
Στ ≠ konstan ω =
θ =


1.2. Momen Inersia
Jika pada gerak translasi (gerak lurus), besaran massa menyatakan ukuran kelembaman benda, maka pada gerak rotasi, besaran yang dapat dianalogikan dengan massa adalah besaran momen inersia. Momen inersia sebuah partikel dapat didefinisikan sebagai hasil kali massa partikel dengan kuadrat jarak partikel dari titik porosnya.
Momen Inersia : I = m r2
* Untuk system benda yang tersusun dari massa-massa yang terpisah (diskrit) : I = Σ m r2
* Untuk system benda yang merupakan massa yang kontinyu : I =
* Untuk system benda dengan massa kontinyu tetapi diputar pada jarak r dari pusat massa dengan sumbu sejajar : I = Ipm + m d2 (dengan d = jarak pusat massa ke sumbu putar)

1.3. Momen Gaya (Torsi = τ)
Momen gaya adalah ukuran besar kecilnya efek putar sebuah gaya. Untuk sumbu tetap dan gaya-gaya yang tidak mempunyai komponen yang sejajar dengan sumbu tersebut.
Momen gaya : τ = r F sin α
dengan α = sudut antara r dan F

1.4. Momen Gaya dan Percepatan Anguler
Sebuah gaya F yang bekerja pada sebuah partikel m secara tangensial (menyinggung lintasan) akan memberikan percepatan tangensial aт yang memenuhi :
F = m aт
karena aт = r α, maka
F = m r α
F r = m r2 α τ = I α
Persamaan di atas juga berlaku untuk sembarang benda tegar, asalkan momen gaya dan momen inersianya dihitung terhadap sumbu yang sama. Persamaan di atas merupakan hokum dasar untuk gerak rotasi.

2. Energi dan Usaha
2.1. Energy Kinetik Rotasi
Sebuah benda yang bergerak rotasi memiliki energy kinetic karena partikel-partikelnya bergerak terus walaupun secara keseluruhan benda tersebut tetap di tempatnya (tidak bergerak translasi).
Energy kinetic sebuah partikel dalam benda adalah : Ek = ½ m v2 = ½ m ω2 r2
Maka energy kinetic seluruh partikel benda, atau energy kinetic rotasi benda adalah : Ek = Σ ½ m v2 = ½ (Σm r2) ω2 atau Ek = ½ I ω2
2.1.1. Kombinasi Gerak Translasi dan Gerak Rotasi
Bila sebuah benda tegar bergerak melalui sebuah ruang dan pada saat yang bersamaan melakukan gerak rotasi (menggelinding), maka energy kinetic benda itu adalah total antara energy kinetic translasinya dengan energy kinetic rotasinya.
Ek = Ek translasi + Ek rotasi
Jadi, Ek = ½ m v2 + ½ I ω2
2.2. Usaha dan Gaya pada Gerak Rotasi
Usaha yang dilakukan oleh gay F pada benda adalah :
W = F s = F r θ
W = τ θ

Sedangkan daya :

P= W/t = Frθ/t = Fr θ/t
Jika kecepatan anguler konstan, maka

P = τ ω
3. Momentum Anguler
Benda-benda yang berotasi cenderung mempertahankan keadaan awalnya (tetap berputar). Sebuah gasing akan terus berputar jika tidak ada friksi yang memperlambatnya.
Jika pada gerak lurus kita mengenal momentum linier, yaitu p = m v , maka analog dengan besaran tersebut, ada besaran momentum anguler (L) yang didefinisikan sebagai :
Momentum anguler : = m x
Dengan r = vector posisi relative terhadap titik poros
harga L dapat dituliskan sebagai : L= m (r) (ω r) sin θ
L= m r2 sin θ ω
atau
L= I ω
Bila resultan momen gaya yang bekerja pada suatu system partikel adalah nol, momentum anguler total system tersebut tetap harganya (konstan);
L1 = L2
atau
I1 ω1 = I2 ω2 persamaan ini menyatakan kekekalan momentum anguler.

Keseimbangan
1. Keseimbangan Pertikel
Sebuah partikel atau benda titik dikatakan seimbang jika resultan gaya-gaya yang bekerja padanya sama dengan nol.
Σ F = 0
Partikel atau benda titik yang seimbang, mungkin berada dalam salah satu dari dua keadaan berikut :
* Diam, disebut seimbang statis
* Bergerak dengan kecepatan konstan, disebut seimbang dinamis

2. Momen Gaya (Torsi)
Momen gaya atau torsi pada sebuah benda menyebabkan benda tersebut berotasi. Ia didefinisikan sebagai berikut (momen dari gaya F terhadap poros, sumbu putar, O)
τ = F Lт atau τ = Fт L
catatan.
* Momen gaya yang menyebabkan rotasi searah jarum jam diberi tanda positif.
* Momen gaya yang menyebabkan rotasi berlawanan arah jarum jam diberi tanda negative.

3. Momen Kopel
Kopel adalah dua buah gaya yang sama besar, berlawanan arah, tetapi tidak segaris kerja. Kopel yang bekerja pada sebuah benda menghasilkan rotasi murni.
Momen kopel dapat dinyatakan sebagai berikut :
M = F d

4. Resultan Gaya Sejajar
Gaya-gaya sejajar mempunyai resultan gaya letak titik tangkapnya sedemikian rupa sehingga resultan momen gaya terhadap titik tersebut adalah nol.
Resultan gaya : FR = F1 + F2

5. Keseimbangan Benda Tegar
Benda yang tidak berubah bentuk ketika dipengaruhi oleh gaya dinamakan benda tegar. Benda tegar dapat bergerak translasi murni, rotasi murni, atau kombinasi keduanya. Bneda tegar dikatakan seimbang bila memenuhi syarat keseimbangan translasi dan keseimbangan rotasi, yaitu :
ΣF = 0 dan Στ = 0


6. Titik Pusat Massa dan Titik (Pusat) Berat

6.1. Titik Pusat Massa
Titik pusat massa adalah sebuah titik dimana seluruh benda dapat dipusatkan padanya. Jika resultan gaya bekerja melelui titik pusat massa, maka benda akan bergerak translasi murni.
Untuk system benda dua dimensi, letak titik pusat massa dinyatakan dengan koordinat (xpm , ypm), dengan :

Xpm = dan ypm =

6.2. Titik Pusat Berat
Titik pusat berat adalah titik tangkap gaya berat yang bekerja pada sebuah benda.
Untuk system benda dua dimensi, letak titik pusat berat dinyatakan dengan koordinat (xpb , ypb), dengan :

Xpb = dan ypb =

Letak titk pusat massa benda pada umumnya tidak sama dengan letak titik pusat berat benda.
Untuk benda yang letaknya dekat dengan permukaan bumi, dimana g dianggap konstan, letak pusat massa dan titik berat sebuah benda dapat dianggap berhimpit.

* Koordinat pusat massa Sistem Partikel (benda tak kontinu) :
Xpm = =
dan
ypm = =

* Absis pusat massa benda homogeny 1 dimensi :
Xpm = l = panjang

* Absis pusat massa benda homogeny 2 dimensi :
Xpm = A = luas


* Absis pusat massa benda homogeny 3 dimensi :
Xpm = V = volume

7. Jenis Keseimbangan
Keadaan keseimbangan suatu benda dapat digolongkan ke dalam salah satu dari 3 jenis keseimbangan berikut :
* Kesimbangan Stabil
Benda di katakana dalam keseimbangan stabil bila benda diberi sedikit usikan, dan kemudian usikan dihilangkan, benda kembali ke posisi keseimbangan semula.










* Keseimbangan Labil
Benda dikatakan dalam keseimbangan labil bila benda diberi sedikit usikan, dan kemudian usikan dihilangkan, benda menjauhi posisi keseimbangan semula (jatuh).










* Keseimbangan Netral (Indiferen)
Benda dikatakan dalam keseimbangan netral (indiferen) bila benda diberi sedikit usikan, dan kemudian usikan dihilangkan, benda membentuk posisi keseimbangan baru di dekat posisi keseimbangan semula.






FLUIDA

Pengertian Fluida.
Fluida adalah zat yang dapat mengalir atau sering disebut Zat Alir.
Jadi perkataan fluida dapat mencakup zat cair atau gas.
Antara zat cair dan gas dapat dibedakan :
Zat cair adalah Fluida yang non kompresibel (tidak dapat ditekan) artinya tidak berubah volumenya jika mendapat tekanan.
Gas adalah fluida yang kompresibel, artinya dapat ditekan.


FLUIDA STATIS

Prinsip Bernoulli
Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan penurunan tekanan pada aliran tersebut. Prinsip ini sebenarnya merupakan penyederhanaan dari Persamaan Bernoulli yang menyatakan bahwa jumlah energi pada suatu titik di dalam suatu aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama. Prinsip ini diambil dari nama ilmuwan Belanda/Swiss yang bernama Daniel Bernoulli.
[sunting] Hukum Bernoulli

Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow).
[sunting] Aliran Tak-termampatkan

Aliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak-termampatkan adalah: air, berbagai jenis minyak, emulsi, dll. Bentuk Persamaan Bernoulli untuk aliran tak-termampatkan adalah sebagai berikut:

p + \rho g h + \frac{1}{2}\rho v^2 = konstan \,

di mana:

v = kecepatan fluida
g = percepatan gravitasi bumi
h = ketinggian relatif terhadap suatu referensi
p = tekanan fluida
ρ = densitas fluida

Persamaan di atas berlaku untuk aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut:

* Aliran bersifat tunak (steady state)
* Tidak terdapat gesekan (inviscid)

Dalam bentuk lain, Persamaan Bernoulli dapat dituliskan sebagai berikut:

p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2



HUKUM ARCHIMIDES
Apabila benda yang dimasukkan ke dalam fluida, terapung, di mana bagian benda yang tercelup hanya sebagian maka volume fluida yang dipindahkan = volume bagian benda yang tercelup dalam fluida tersebut. Tidak peduli apapun benda dan bagaimana bentuk benda tersebut, semuanya akan mengalami hal yang sama. Ini adalah buah karya eyang butut Archimedes (287-212 SM) yang saat ini diwariskan kepada kita dan lebih dikenal dengan julukan “Prinsip Archimedes”. Prinsip Archimedes menyatakan bahwa :

Ketika sebuah benda tercelup seluruhnya atau sebagian di dalam zat cair, zat cair akan memberikan gaya ke atas (gaya apung) pada benda, di mana besarnya gaya ke atas (gaya apung) sama dengan berat zat cair yang dipindahkan.


PERSAMAAN TEGANGAN PERMUKAAN
Jika kawat U dimasukan ke dalam larutan sabun, maka setelah dikeluarkan akan terbentuk lapisan air sabun pada permukaan kawat tersebut. Mirip seperti ketika dirimu bermain gelembung sabun. Karena kawat lurus bisa digerakkan dan massanya tidak terlalu besar, maka lapisan air sabun akan memberikan gaya tegangan permukaan pada kawat lurus sehingga kawat lurus bergerak ke atas (perhatikan arah panah). Untuk mempertahankan kawat lurus tidak bergerak (kawat berada dalam kesetimbangan), maka diperlukan gaya total yang arahnya ke bawah, di mana besarnya gaya total adalah F = w + T. Dalam kesetimbangan, F = gaya tegangan permukaan yang dikerjakan oleh lapisan air sabun pada kawat lurus.

Misalkan panjang kawat lurus adalah l. Karena lapisan air sabun yang menyentuh kawat lurus memiliki dua permukaan, maka gaya tegangan permukaan yang ditimbulkan oleh lapisan air sabun bekerja. Tegangan permukaan pada lapisan sabun merupakan perbandingan antara Gaya Tegangan Permukaan (F) dengan panjang permukaan di mana gaya bekerja (d). Untuk kasus ini, panjang permukaan adalah 2l.
Karena tegangan permukaan merupakan perbandingan antara Gaya tegangan permukaan dengan Satuan panjang, maka satuan tegangan permukaan adalah Newton per meter (N/m) atau dyne per centimeter (dyn/cm).

1 dyn/cm = 10-3 N/m = 1 mN/m



TERMODINAMIKA

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.

Hukum kekekalan energi adalah salah satu dari hukum-hukum kekekalan yang meliputi energi kinetik dan energi potensial. Hukum ini adalah hukum pertama dalam termodinamika.

Asas Black adalah suatu prinsip dalam termodinamika yang dikemukakan oleh Joseph Black. Asas ini menjabarkan:

* Jika dua buah benda yang berbeda yang suhunya dicampurkan, benda yang panas memberi kalor pada benda yang dingin sehingga suhu akhirnya sama
* Jumlah kalor yang diserap benda dingin sama dengan jumlah kalor yang dilepas benda panas
* Benda yang didinginkan melepas kalor yang sama besar dengan kalor yang diserap bila dipanaskan

Rumus Asas Black =

(M1 X C1) (T1-Ta) = (M2 X C2) (Ta-T2)

Catatan :

M1 = Massa benda yang mempunyai tingkat temperatur lebih tinggi
C1 = Kalor jenis benda yang mempunyai tingkat temperatur lebih tinggi
Ta = Temperatur benda yang mempunyai tingkat temperatur lebih tinggi
T1 = Temperatur akhir pencampuran kedua benda
M2 = Massa benda yang mempunyai tingkat temperatur lebih rendah
C2 = Kalor jenis benda yang mempunyai tingkat temperatur lebih rendah
T2 = Temperatur benda yang mempunyai tingkat temperatur lebih rendah



HUKUM I TERMODINAMIKA

Hukum Kekekalan Energi (Hukum I Termodinamika) berbunyi: "Energi dapat berubah dari satu bentuk ke bentuk yang lain tapi tidak bisa diciptakan ataupun dimusnahkan (konversi energi)".

Keterangan :

delta U = Perubahan energi dalam

Q = Kalor

W = Kerja

Hukum pertama termodinamika merupakan pernyataan Hukum Kekekalan Energi dan ketepatannya telah dibuktikan melalui banyak percobaan (seperti percobaan om Jimi Joule). Perlu diketahui bahwa hukum ini dirumuskan pada abad kesembilan belas, setelah kalor dipahami sebagai energi yang berpindah akibat adanya perbedaan suhu.

HUKUM II TERMODINAMIKA
Kalor berpindah dengan sendirinya dari benda bersuhu tinggi ke benda bersuhu rendah; kalor tidak akan berpindah dengan sendirinya dari benda bersuhu rendah ke benda bersuhu tinggi (Hukum kedua termodinamika)